Press "Enter" to skip to content

Syndecan 1 represses cell growth and FSH responsiveness in human granulosa cells

Albeit devoid of intrinsic catalytic activity, the transmembrane heparan sulphate proteoglycan syndecan 1 plays critical roles in cellular processes such as extracellular matrix crosstalk, cytoskeletal organization, cell spreading, proliferation and differentiation. During the ovarian cycle, the expression of syndecan 1 in granulosa cells shows cyclic variation suggesting that it might fulfil specific roles in follicle development. To investigate its physiological roles on granulosa cells, syndecan 1 was overexpressed in human granulosa cell line KGN which retains features of granulosa cells from small antral follicle such as estradiol (E2) synthesis and low expression of functional FSH receptor (FSHR). We demonstrated that overexpression of syndecan 1 in immature granulosa cells (KGN-SDC1) induces a profound alteration in their intrinsic characteristics including enhanced spreading and attachment, both associated with a reduced growth rate. Flow cytometry analysis revealed that syndecan 1 overexpression increases the percentage of KGN cells in quiescent phase. This partial cell cycle exit is concordant with downregulated levels of CCND1 and CDK4 and upregulated expression of CDK inhibitor CDKN1A. In parallel both unstimulated and FSH-induced E2 synthesis are reduced in KGN-SDC1 through both repression of CYP19A1 and FSHR mRNA associated with decreased levels of potential regulators NR5A1 and ESR2. Additionally, we provide evidence that transient cAMP accumulation reduction in cells overexpressing syndecan 1 is accompanied by an increase in cAMP-hydrolysing PDE activity. Our results demonstrated that syndecan 1 might regulate differentiation of granulosa cells and follicular development by means of various mechanisms involving morphological changes, control of signalling pathways and alterations in gene expressions.

Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/797/suppl/DC2

Source: The journal of Reproductive Science

Be First to Comment