Press "Enter" to skip to content

Expression of atresia biomarkers in granulosa cells after ovarian stimulation in heifers

Expression of atresia biomarkers in granulosa cells after ovarian stimulation in heifers

The use of younger gamete donors in dairy cattle genetic selection programs significantly accelerates genetic gains by decreasing the interval between generations. Ovarian stimulation (OS) and the practice of follicle-stimulating hormone (FSH) withdrawal, also known as coasting, are intensively used in pre-pubertal heifers without detrimental effects on subsequent reproductive performance but generally with lower embryo yields. However, recent data from embryo transfer programs showed similar embryo yields in younger and sexually mature animals but with a significant difference in the coasting period. The aim of the present study was to identify a set of granulosa cell biomarkers capable of distinguishing optimal follicle differentiation from late differentiation and atresia in order to assess the differences in coasting dynamics between pre- and post-pubertal donors. We integrated transcriptomic data sets from a public depository and used vote counting meta-analysis in order to elucidate the molecular changes occurring in granulosa cells during late follicle differentiation and atresia. The meta-analysis revealed the gene expression associated with follicle demise, and most importantly, identified potential biomarkers of that status in bovine granulosa cells. The comparison of the expression of six biomarkers between pre- and post-pubertal donors revealed that younger donors had more signs of atresia after the same period of coasting. We found different follicular dynamics following coasting in younger donors. It is possible that younger donors are less capable to sustain follicular survival most likely due to insufficient luteinizing hormone signaling. In summary, the pre-pubertal status influences follicular dynamics and reduces the oocyte developmental competence curve following OS and FSH withdrawal in heifers.


Source: The journal of Reproductive Science

Be First to Comment