Press "Enter" to skip to content

Effect of controlled ovarian hyperstimulation on puberty and estrus in mice offspring

Effect of controlled ovarian hyperstimulation on puberty and estrus in mice offspring

Controlled ovarian hyperstimulation (COH) is widely used for the treatment of infertility, while the long-term effects of COH on the reproductive function in female offspring are currently unknown. Based on the fact that COH could cause high E2 levels in women throughout pregnancy and excess estrogenic exposure during fetal development is harmful to subsequent adult ovarian function, we assumed the hypothesis that COH disrupts reproductive function in female offspring. To test this hypothesis, COH was induced in mice to obtain female offspring by pregnant mare serum gonadotropin (PMSG) and HCG, and then we evaluated pubertal transition, serum levels of E2, anti-Mullerian hormone (AMH), FSH and LH, mRNA expressions of Esr1, Amhr2, Fshr and Lhcgr in ovaries, number of follicles and ovarian histology. We also investigated the apoptosis of follicles by TUNEL; the mRNA expressions of Fas, FasL, Bax, Bcl2, and caspase 3, 8 and 9 by quantitative real-time PCR; and the protein expressions of cleaved-caspase (CASP) 3, 8 and 9 by Western blot. Moreover, we further observed estrous cyclicity in young adult offspring, performed follicle counting and measured the level of AMH in both serum and ovary. COH could induce detrimental pregnancy outcomes, as well as delayed pubertal transition and irregular estrous cycle due to the aberrant growth and maturation of follicles in female offspring. Our novel findings add new evidence to better understand the potential risks of COH on the reproductive function in female offspring, raising the awareness that COH could exert adverse effects on female offspring, rather than just obtain more oocytes for fertilization.


Source: The journal of Reproductive Science

Be First to Comment

Leave a Reply